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RIEMANNIAN GEOMETRY
OVER DIFFERENT

NORMED DIVISION ALGEBRAS

NAICHUNG CONAN LEUNG

Abstract
We develop a unifed theory to study geometry of manifolds with differ-
ent holonomy groups. They are classified by (1) real, complex, quaternion
or octonion number (in the appropriate cases) and (2) being special or not.
Specialty is an orientation with respect to the corresponding normed algebra
A. For example, special Riemannian A-manifolds are oriented Riemannian,
Calabi-Yau, hyperkähler and G2-manifolds respectively.

For vector bundles over such manifolds, we introduce (special) A-
connections. They include holomorphic, Hermitian Yang-Mills, Anti-Self-
Dual and Donaldson-Thomas connections. Similarly we introduce (special)
1
2

A-Lagrangian submanifolds as maximally real submanifolds. They include
(special) Lagrangian, complex Lagrangian, Cayley and (co-)associative sub-
manifolds.

We also discuss geometric dualities from this viewpoint: Fourier trans-
formations on A-geometry for flat tori and a conjectural SYZ mirror trans-
formation from (special) A-geometry to (special) 1

2
A-Lagrangian geometry

on mirror special A-manifolds.

1. Introduction

It is well-known that a Riemannian metric g on a manifold M de-
termines a unique torsion free Riemannian connection on its tangent
bundle, called the Levi-Civita connection. For a generic metric g, its
holonomy group Hol(g) equals O(m) with m = dimM . The size of the
holonomy group is inversely proportional to the amount of geometric
structures M possesses. For example Hol(g) ⊂ U(n), with m = 2n,
is equivalent to M being a Kähler manifold. When we further restrict
the holonomy group to SU(n), we obtain a Calabi-Yau manifold and
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they are the central objects of interest in mirror symmetry. Recently,
M-theory suggests that the geometry of seven dimensional manifolds
with Hol (g) ⊂ G2 has even richer geometry. Other holonomy groups,
like Sp (n) for hyperkähler manifolds, are also very important in modern
geometry. A complete classification of all possible holonomy groups has
been obtained by Berger [4] many years ago.

In this paper we are going to study all these geometries from a unified
point of view. Namely we analyze geometries as they are defined over
R, C, H or O, the four normed division algebras A. In a sense this
approach is very natural, as metric geometry should be defined over
metric algebras.

A Riemannian manifold is called an A-manifold if its holonomy
group is inside GA(n), the group of twisted isomorphisms of A

n. We
can identify these manifolds for various A as Riemannian manifolds,
Kähler manifolds, quaternionic Kähler manifolds and Spin(7)-manifolds
respectively. There is also a notion of an A-orientation and it defines a
subgroup HA(n) in GA(n) consisting of special twisted isomorphisms of
A

n. Corresponding manifolds are called special A-manifolds, and they
are oriented Riemannian manifolds, Calabi-Yau manifolds, hyperkähler
manifolds and G2-manifolds respectively. Notice that these are precisely
all possible holonomy groups for a Riemannian manifold which is not
locally symmetric. In this classification, manifolds with G2 holonomy
group are those with richest geometric structures.

Unlike real or complex manifolds, H- and O-manifolds do not have
many functions. Their geometries are reflected by submanifolds and
bundles over them. To define them in a unified way, we note that
holonomy groups GA(n) and HA(n) define natural subbundles gA(TM )
and hA(TM ) in Λ2T ∗

M . For example when A = C, i.e., M is a Kähler
manifold, we have gC(TM ) = Λ1,1(M) and hC(TM ) = Λ1,1

0 (M).
A connection DE on a vector bundle E over M is called an A-

connection (resp. special A-connection) if its curvature tensor FE lies
inside gA (TM ) ⊗ ad (E) (resp. hA (TM ) ⊗ ad (E)). In the Kähler case,
such a connection DE is a holomorphic connection, i.e., F 0,2

E = F 2,0
E = 0

(resp. Hermitian Yang-Mills connection). Special A-connections, with
A �= R, are always absolute minimum for the Yang-Mills energy func-
tional, as it will be explained in terms of bundle calibrations.

A natural class of submanifolds in any A-manifold consists of A-
submanifolds. However, there is another natural class of submanifolds
in the middle dimension, which plays the role of decomplexifying M , and
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they are called 1
2A-Lagrangian submanifolds. For example they include

Lagrangian submanifolds in Kähler manifolds and Cayley submanifolds
in Spin (7)-manifolds. Using the A-orientation on a special A-manifold,
we also have the notion of special 1

2A-Lagrangian submanifolds of Type
I or Type II. They can be identified as special Lagrangian submani-
folds (with phase angle 0 or π/2) in Calabi-Yau manifolds, complex
Lagrangian submanifolds in hyperkähler manifolds, associative subman-
ifolds and coassociative submanifolds in G2-manifolds. As in the bundle
case, special 1

2A-Lagrangian submanifolds are absolute minimum for the
volume functional as they are all volume calibrated.

A good notion of a global decomplexification of M is a fibration
with a section on M by (special) 1

2A-Lagrangian submanifolds, possi-
bly singular. For example, in the theory of geometric quantization of
symplectic manifolds, a real polarization is merely a smooth Lagrangian
fibration with a section.

To define and study the geometry of any (special) A-manifold M ,
we need to couple submanifolds C in M with connections DE over C
and we call any such pair (C,DE) a cycle. We have:

(i) A (special) A-cycle consists of an A-submanifold and a (special)
A-connection over it.

(ii) A (special) 1
2A-Lagrangian cycle consists of a (special) 1

2A-Lagran-
gian submanifold and a special A-connection over it.

For instance, in the Kähler case, a C-cycle is a holomorphic bundle over
a complex submanifold in M , in particular it is a coherent sheaf on M .
Such a C-cycle is special if the bundle carries a Hermitian Yang-Mills
connection. Similarly, a (special) R-Lagrangian cycle is a flat bundle
over a (special) Lagrangian submanifold in the Calabi-Yau manifoldM .
The mirror symmetry conjecture says that these two types of geometries
can be transformed to each other on mirror Calabi-Yau manifolds.

Such duality transformations play very important roles both in math-
ematical physics and geometry. A basic ingredient is the Fourier trans-
formation. We will recall how it transforms the A-geometry on a flat
torus over A to the A-geometry on its dual torus. For a special A-
manifold M with a special 1

2A-Lagrangian fibration and a section, we
also discuss briefly the SYZ mirror duality which transforms the (spe-
cial) A-geometry of M to the (special) 1

2A-Lagrangian geometry of its
mirror manifold. This can be viewed as a fiberwise Fourier transforma-
tion along 1

2A-Lagrangian fibrations (see [32], [10], [27], [16], [22] in the
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Calabi-Yau case, [23] in the hyperkähler case and [1], [11], [18] in the
G2-manifolds case).

In the last section, we give several remarks and questions on related
aspects of geometries over different normed division algebras A.

2. (Special) Riemannian A-manifolds

In this section we define Riemannian manifolds over different normed
division algebras. As we will see, all possible holonomy groups arise
naturally from manifolds defined over R, C, H or O; unless they are
locally symmetric spaces. This gives us a unified way to look at all
the seemingly unrelated branches of geometry in mathematics. We first
recall some basic facts about normed division algebras A (see e.g., [12]),
then we will define the key notion: twisted isomorphisms.

2.1 Normed division algebra, A

Definition 1. A normed algebra A is a finite dimensional real al-
gebra with a unit 1 and a norm ‖·‖ satisfying ‖a · b‖ = ‖a‖ ‖b‖ for any
a, b ∈ A.

There are exactly four of them, namely the real R, the complex C,
the quaternion H and the octonion (or Cayley) O numbers. Each can
be interpreted as the complexification of the previous one, the so-called
Cayley-Dickson process: suppose A is any algebra with conjugation ∗,1
we define an algebra structure on B = A⊕ A as follows,

(a, b) (c, d) = (ac− db∗, a∗d+ cb)
(a, b)∗ = (a∗,−b) .

This process will construct C from R (and we write R = 1
2C) and so on.

The following properties of a normed algebra will be needed in this
article: (i) 〈xy, z〉 = 〈x, zy〉, (ii) 〈xy, zy〉 = 〈x, z〉 |y|2 and (iii) (xy) y =
x

(
y2

)
for any x, y, z ∈ A. Furthermore, A is always a division algebra.

Each time we complexify A, we loss some nice properties: (1) C is
not real, (2) H is not commutative, (3) O is not associative and lastly
O⊕O is no longer normed. As a result, H

n is only a bi-module of H

and not a vector space because H is not a field. Furthermore, O does
not even act on O

n, with n ≥ 2, because of the nonassociativity. We call

1We also denote ∗a as a.
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A
n a linear A-space of rank n, and its real dimension is m = 2an with

a = 0, 1, 2 or 3. An inner product on A
n always refers to one satisfying

〈u · x, v · x〉 = 〈u, v〉 |x|2 ,

for any u, v ∈ V and x ∈ A.

To define A-manifolds, the nonlinear analog of linear A-spaces, we
first need to define twisted isomorphisms of A

n. Recall on a normed lin-
ear A-space V ∼= A

n, an automorphism of V is a real linear isomorphism
φ : V → V satisfying

〈φ (u) , φ (v)〉 = 〈u, v〉 ,
φ (vx) = φ (v)x,

for any u, v ∈ V and x ∈ A. For example, in the quaternionic case,
an automorphism of H

n preserves all three complex structures I, J and
K on it, in fact it preserves the whole S2 (twistor) family of complex
structures. From the metric point of view, it is more natural to allow
φ to rotate these complex structures. This brings us to the following
definition.

Definition 2. Suppose V is a normed linear A-space of rank n. A
R-linear isometry φ of V is called a twisted isomorphism if there exists
θ ∈ SO (A) such that

φ (vx) = φ (v) θ (x)

for any v ∈ V and x ∈ A.
We denote the group of twisted isomorphisms of

⊕n
A as GA(n).

The following proposition identifies the group of twisted isomor-
phisms for each A. Recall that when A = O, we assume that V has
octonion dimension one.

Proposition 3. The normed algebras and their corresponding groups
of twisted isomorphisms are given as follows,

A = R C H O

GA(n) = O(n) U(n) Sp(n)Sp(1) Spin(7).

Proof. For A = R, the assertion is trivial because SO(R) is the
trivial group. In the complex case, we have θ ∈ SO(C) = U(1), that is
there exists z ∈ C with |z| = 1 satisfying θ(x) = zx for any x ∈ C. The
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requirement φ(vx) = φ(v)zx for x = 1 implies that z = 1. That is φ is
complex linear and hence GA(n) = GL(n,C) ∩O(2n) = U(n).

In the quaternionic case, we have θ ∈ SO(H) = Sp(1)Sp(1), i.e.,
θ(x) = αxβ for some unit quaternions α, β ∈ S3 ⊂ H. The requirement
φ(vx) = φ(v)αxβ with x = 1 implies that αβ = 1 ∈ SO(4), i.e., β =
α−1. If we define a linear homomorphism A by

A(v) = φ(v)α,

for any v ∈ H
n, then A(vx) = A(v)x for any x ∈ H, i.e., A ∈ GL(n,H)∩

O(4n) = Sp(n). From this, we have φ ∈ Sp(n)Sp(1) = GH(n). For the
octonionic case, the identification of GO with Spin(7) can be found in
[30]. q.e.d.

2.2 Special Riemannian A-manifolds

We begin with the definition of Riemannian manifolds defined over A.

Definition 4. A Riemannian manifold (M, g) is called a Rieman-
nian A-manifold, or simply an A-manifold, if the holonomy group of
its Levi-Civita connection is a subgroup of GA(n) ⊂ O(m) with m =
dimM = n dimA.

From the previous proposition, we know that Riemannian A-manifolds
for various A have holonomy groups inside O(n), U(n), Sp(n)Sp(1) and
Spin(7) respectively and these manifolds are called Rieman-
nian manifolds, Kähler manifolds, quaternionic Kähler manifolds and
Spin(7)-manifolds respectively.

In Section 6, we will discuss A-manifolds without Riemannian met-
rics, e.g., complex manifolds.

Next we introduce the notion of an A-orientation for Riemannian
A-manifolds. For a real Riemannian manifold M , an orientation is a
parallel volume form on M . Equivalently the holonomy group of M
is inside SO(m) ⊂ O(m). The determinant defines a natural action of
O(m) on Λm

R ∼= R and SO(m) is the isotropy subgroup for any nonzero
element in R. In general there is a natural real representation of GA(n)
on A,

λA : GA(n)→ O(A),

except in the quaternionic case where the action is only defined projec-
tively.
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Definition 5. For any g ∈ GA(n) and x ∈ A, we define:
(1) λR(g)(x) = xdet(g) ∈ R,
(2) λC(g)(x) = xdet C(g) ∈ C,
(3) λH(g)(x) = xβ ∈ H with g = (α, β) ∈ Sp(n)Sp(1) and
(4) λO(g)(x) = g · x ∈ O via Spin(7) ⊂ SO(8).

Note that GA(n) always acts transitively on the unit sphere in A.
The explanation of the seemingly different looking λH is as follows:

First detH can not be defined because of the noncommutativity of H.
Even when A = C, detC can be interpreted as giving a decomposition,

U(n)
∼=→ SU(n)×U(1)/Zn

A→ (A · (det CA)−1/n, (det CA)1/n)

and the projection to the second factor (det CA)1/n ∈ U(1)/Zn can
be reinterpreted as an element in U(1) by raising to the nth-power,
thus giving the complex determinant of A. The natural analog in the
quaternionic case is the identification,

GH(n) = Sp(n)Sp(1)
∼=→ Sp(n)× Sp(1)/Z2

thus (α, β)→ β is the direct analog to (det CA)1/n in the complex case.
Later this Z2 factor will identify special C-Lagrangian submanifolds of
Type I and Type II in any hyperkähler manifolds to the same kind of
objects, namely the complex Lagrangian submanifolds, see Section 4.2.

Definition 6. A twisted isomorphism g ∈ GA(n) is called special if
λA(g) fixes 1 ∈ A. That is g is an element in the isotropy subgroup of
1 in GA(n), which we denote HA(n).

It is not difficult to identify these groups when A = R, C or H. In
the octonionic case, it is a classical result (see e.g., [30]) that HO(1) is
G2. Recall that the Lie group G2 can be identified as the stabilizer of
the natunal action of Spin(7) on S7. Thus we have the following lemma.

Lemma 7. The normed algebras and their corresponding groups of
special twisted isomorphisms are given as follows,

A = R C H O

HA(n) = SO(n) SU(n) Sp(n) G2.
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Table 1:

Riemannian A-manifolds Special Riemannian A-manifolds

R O(n) SO(n)
(Riemannian manifolds) (Oriented Riemannian manifolds)

C U(n) SU(n)
(Kähler manifolds) (Calabi-Yau manifolds)

H Sp(n)Sp(1) Sp(n)
(Quaternionic-Kähler (Hyperkähler manifolds)
manifolds)

O Spin(7) G2

(Spin(7)-manifolds) (G2-manifolds)

Remark. An isomorphism of a normed linear A-space is the same
as (i) a twisted isomorphism when A is R or C and (ii) a special twisted
isomorphism when A is H or O.

Next we define the analog of an orientation for Riemannian A-
manifold (M, g), i.e., the holonomy group for the Levi-Civita connection
is inside GA(n).

Definition 8. A Riemannian A-manifold is called special if its
holonomy group is inside HA(n).

There is another characterization of special A-manifolds. Using the
representation λA(n) of GA(n), we obtain a vector bundle AM over any
Riemannian A-manifold M ,

A→ AM →M .

Then M is special if and only if there is a parallel section for AM .
In the real case, we have RM = ΛnT ∗

M . In the complex case, we have
CM = ΛnT

∗(1,0)
M , the canonical line bundle of M . In the quaternionic

case, the projection of its holonomy group Sp(n)Sp(1) to its first and
second factor are only well-defined up to ±1. Suppose that M is spin,
w2(M) = 0, then this ±1 ambiguity can be lifted and we obtain a Sp(n)-
bundle V and a Sp(1)-bundle S overM via the standard representation
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of Sp(n) and Sp(1) respectively. The inclusion of Sp(n)Sp(1) in SO(4n)
gives the isomorphism

T ∗
M ⊗R C = V ⊗C S.

We have HM = S. When w2(M) �= 0, then V and S only exist locally
(see e.g., [5]).

In the octonionic case, we simply have OM = T ∗
M .

Table 1 lists the possible holonomy groups for all (special) Rieman-
nian A-manifolds and their usual names. This list gives all possible
holonomy groups of a (non-locally symmetric) irreducible Riemannian
manifold M , as classified by Berger [4]. To phrase this differently, Rie-
mannian manifolds with various holonomy groups are classified in terms
of a normed division algebra A and its A-orientability.

2.3 Characterizations and properties

For completeness, we briefly describe these (special) A-manifolds and
introduce certain natural differential forms on them that we will need
later, see [5] or [31] for details. In the real case, (special) Riemannian R-
manifolds are simply (oriented) Riemannian manifolds. Orientability of
M allows us to determine a square root

√
det(gij) consistently, and we

obtain a parallel volume form νM . Other (special) A-manifolds also ad-
mit characterizations in terms of the existence of certain nondegenerate
parallel forms. In all cases, harmonicity is already enough.

(1) C-manifolds (i.e., Kähler manifolds), Hol(g) ⊂ U(n). Since
U(n) = O(2n) ∩ GL(n,C), the Levi-Civita connection ∇ preserves an
(almost) complex structure J , i.e.,

J2 = −1 and ∇J = 0.

This implies integrability of J . Alternatively we can use the Kähler
form ω,

ω(v, w) = g(Jv,w) and ∇ω = 0,

to characterize a Kähler manifold. Namely, a Hermitian metric on a
complex manifold M is Kähler if and only if dω = 0. It follows that
every projective algebraic manifold inside CP

N is Kähler.
(2) Special C-manifolds (i.e., Calabi-Yau manifolds), Hol(g) ⊂

SU(n). By definition, these are Kähler manifolds with a parallel section
of the canonical line bundleKM = ΛnT

∗(1,0)
M , i.e., a parallel holomorphic
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volume form Ω ∈ Ωn,0(M). By the celebrated result of Yau [36], such a
structure always exist on any compact Kähler manifold with topological
trivial KM . This follows that a degree d smooth hypersurface in CP

n+1

admits a Calabi-Yau metric if and only if d = n+2. For instance, when
n = 2, we have a quartic surface in CP

3, that is a K3 surface.
(3) Special H-manifolds (i.e., hyperkähler manifolds), Hol(g) ⊂

Sp(n). Since Sp(n) is the automorphism group of the quaternionic vec-
tor space H

n, the Riemannian metric on such a manifold support three
Kählerian complex structures I, J , K satisfying the Hamilton relation

I2 = J2 = K2 = IJK = −1.

A characterization by Hitchin says that a Riemannian metric on M
which is Hermitian with respect to three almost complex structures I,
J and K, satisfying the Hamilton relation and dωI = dωJ = dωK = 0,
then its holonomy group is inside Sp(n). This implies that the dis-
tinction between Kähler manifolds and symplectic manifolds no longer
exists in the quaternionic case.

If we denote ΩJ = ωI + iωK , then ΩJ is a parallel holomorphic sym-
plectic form on M . Using Yau’s theorem, every compact Kähler mani-
fold with a holomorphic symplectic form admits a hyperkähler structure.

When dimM = 4, i.e., n = 1, hyperkähler manifolds are the same
as Calabi-Yau manifolds because of Sp(1) = SU(2). If M is compact
then it is either a flat torus of dimension four or a K3 surface. Using
Yau’s theorem, Fujiki and Beauville show that if S is a compact hy-
perkähler manifold of dimension four, then the minimal resolution of
the symmetric product of S admits a natural hyperkähler structure.

(4) H-manifolds (i.e., quaternionic Kähler manifolds), Hol(g) ⊂
Sp(n)Sp(1). Such a manifold is similar to a hyperkähler manifold, how-
ever, the individual complex structures I, J and K can only be defined
locally. The four form Θ = ω2

I + ω2
J + ω2

K is nevertheless well-defined
and parallel. Examples include quaternionic projective spaces HP

n.
(5) Special O-manifolds (i.e., G2-manifolds), Hol(g) ⊂ G2. Since

G2 = HO stabilizes 1 ∈ O, it is really a subgroup of SO(ImO) = SO(7).
That implies that, up to covering, M = X × R because of the deRham
decomposition (see e.g., [5]). Traditionally a G2-manifold is referred to
the seven dimensional manifold X. The cross product on O, defined
as x × y = Im yx, induces a product structure × on any G2-manifold
because G2 is the automorphism group of the normed algebra O. This
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determines a parallel (positive) three form Ω,

Ω(x, y, z) = 〈x, y × z〉 and �Ω = 0

on any G2-manifold X. Recall that the natural action of GL(7,R) on
Λ3

R
7 has two open orbits, called positive and negative (see e.g., [13]).

Those three forms in the same open orbit as the one above are called
positive. Gray shows that any harmonic positive three form on X de-
termines a G2-manifold structure on it. We will also use the parallel
four form Θ = ∗Ω later.

(6) O-manifolds (i.e., Spin(7)-manifolds), Hol(g) ⊂ Spin(7) ⊂ SO(8).
Gray shows that an eight dimensional manifold M has holonomy group
Spin(7) if and only if it admits a harmonic (and hence parallel) self-
dual four form Θ. We have Θ = ΩG2 ∧ dx0−ΘG2 when our O-manifold
M = X × R is special. Complete examples of (special) O-manifolds
are constructed by Bryant and Salamon [6] and compact examples are
constructed by Joyce [14], and recently by Kovalev [17].

In Table 2, we list the various parallel forms on A-manifolds, in the
Euclidean case.2

Remark. Special Riemannian A-manifolds (with A �= R) are
Calabi-Yau manifolds, hyperkähler manifolds and G2-manifolds. These
spaces are the central objects of interests in string theory, conformal
field theory and M-theory in physics. From a mathematical point of
view, they share many good geometric properties:3

(1) Their Ricci tensors are all zero, Ricci = 0.

(2) IfM is compact with holonomy group equal toHA(n), then π1(M)
is finite.

(3) The moduli spaces of these metrics are always smooth, as shown
by Bogomolov, Joyce, Tian and Todorov.

(4) We can define a period map on the moduli space by integrating
the parallel form Ω over topological cycles. Locally the period
map determines the moduli space together with its Weil-Peterrson
metric.

(5) The first Pontriagin number of M is nonnegative; moreover it is
zero if and only if M is flat.

2[123] means terms obtained by permuting the indexes insides the bracket.
3Many of these properties are also shared by Spin(7)-manifolds.
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Table 2:

Riemannian A-manifolds Parallel forms

R Oriented Riem. mfds. On R
n,νM = dx1dx2 . . . dxn

C Kähler manifolds On C
n,ω = i

2(dz
1dz1 + · · ·+ dzndzn)

Calabi-Yau manifolds On C
n,ω and Ω = dz1 ∧ · · · ∧ dzn

H Quat. Kähler manifolds On H
n,Θ = ω2

I + ω2
J + ω2

K

Hyperkähler manifolds On H
n,ωJ = i

2(dz
1dz1 + · · ·+ dz2ndz2n)

ΩJ = ωI + iωK

= dz1dz2 + · · ·+ dz2n−1dz2n

O Spin(7)-manifolds On R
8,Θ = ΩG2 ∧ dx0 −ΘG2

G2-manifolds On R
7,ΩG2 = dx123

−dx1(dy23 + dy10) + [123]
ΘG2 = ∗ΩG2

On real (resp. complex) manifolds, there are many local differen-
tiable (resp. holomorphic) functions, which are used to describe the
geometry of these manifolds. However on H - (or O -)manifolds, there
are very few such functions. For instance, Gray shows that every
quaternionic map is totally geodesic. In particular there are no quater-
nionic submanifolds in HP

N other than linear subspaces. Instead the
geometries of these manifolds are reflected by their (Yang-Mills cali-
brated) A-connections and (volume calibrated) A-submanifolds and 1

2A-
Lagrangian submanifolds.

3. Yang-Mills bundles

Suppose E is a Hermitian vector bundle over M

C
r → E →M .
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A connection on E gives a first order differential operator

DE : Ωk(M,E)→ Ωk+1(M,E).

Its square is a zeroth order operator, called the curvature tensor FE =
(DE)2 ∈ Λ2(M, ad(E)). If DE is a flat connection, i.e., FE = 0, then
holonomy around any point x ∈M gives a representation of the funda-
mental group,

ρ : π1(M,x)→ U(r),

and vice versa.
When M is a complex manifold of complex dimension n, we can

decompose differential forms into (p, q)-types,

Λ2(M,C) = Λ2,0(M) + Λ1,1(M) + Λ0,2(M).

If E is a holomorphic bundle over M then it admits a connection with
F 0,2

E = F 2,0
E = 0 and vice versa. Roughly speaking, holomorphic struc-

tures on E are equivalent to partial flat connections on it. When M is
also Kähler, we have a further decomposition into primitive components
(e.g., [5]),

Λ1,1(M) = Λ1,1
0 (M) + Cω.

Hermitian connections on E satisfying F 0,2
E = F 2,0

E = 0 and FE∧ωn−1 =
0 are called Hermitian Yang-Mills connections (with zero slope). They
have absolute minimum Yang-Mills energy (see Section 3.2). By a fa-
mous result of Donaldson, Uhlenbeck and Yau, the existence of such
connections is equivalent to the Mumford polystability for E, a natu-
ral notion in algebraic geometry which is used in constructing moduli
spaces. Note that we can rephrase these two equations as requiring
FE ∈ Λ1,1

0 (M, ad(E)).
Another familiar class of partial flat connections are ASD connec-

tions over an oriented Riemannian four manifold M . Using the isomor-
phism SO(4) ∼= Sp(1)Sp(1) we can decompose two-forms into self-dual
and anti-self-dual components,

Λ2(M) = Λ2
+(M) + Λ2

−(M)

F = F+ + F− =
F + ∗F

2
+
F − ∗F

2
.
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A Hermitian connection DE over M is called an instanton, or ASD
connection if the self-dual component of its curvature vanishes, F+

E = 0.
Equivalently we have FE ∈ Λ2−(M, ad(E)). Again an ASD connection
always have absolute minimum Yang-Mills energy. Donaldson studies
their moduli space in details and obtain many nontrivial results in four
dimensional differential topology [7].

We are going to generalize these and define natural classes of partial
flat connections over Riemannian A-manifolds.

3.1 (Special) A-connections

Suppose that M is a (special) Riemannian A-manifold of dimension
m = 2an, where a = dimA. Its holonomy group GA(n) (resp. HA(n)) is
a subgroup of O(m). We denote their Lie algebra as gA(n) and hA(n)
respectively. We have

hA(n) ⊂ gA(n) ⊂ o(m).

Using the natural identification o(m) ∼= Λ2
R

m∗, we obtain natural sub-
bundles

hA(TM ) ⊂ gA(TM ) ⊂ Λ2(M),

over a (special) A-manifoldM . In fact the subbundles hA(TM ) ⊂ Λ2(M)
is well-defined even for A-manifolds as long as A �= O. This is because
hA(n) is an ideal in gA(n) in these cases. We define two natural classes
of partial flat connections on an A-manifold as follows.

Definition 9. Suppose DE is a connection on a vector bundle E
over a (special) Riemannian A-manifold M . We denote its curvature
two-form as FE ∈ Λ2(M, ad(E)). Then:

(1) DA a called an A-connection if

FE ∈ gA(TM )⊗ ad(E),

(2) DA is called a special A-connection if

FE ∈ hA(TM )⊗ ad(E).

We are going to describe these partial flat connections individually.
Most of them can be identified with well-known Yang-Mills connections
in the literature, as indicated in Table 3.
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Table 3:

A-connections special A-connections

C F 0,2
E = F 2,0

E = 0 F 0,2
E = F 2,0

E = ΛFE = 0

(Holomorphic bundles) (Hermitian Yang-Mills bdls.)

H FE ∈ gH(TM )⊗ ad(E) F 0,2
I = F 0,2

J = F 0,2
K = 0

(ASD or hyperholomorphic bdls.)

O ∗FE +Θ ∧ FE = 0 FE ∧Θ = 0

(Spin(7)-Donaldson- (G2 -Donaldson-Thomas bdls.)
-Thomas bdls.)

When A = R we have o(n) = hR(n) = gR(n). Therefore a (special)
R-connection is simply any connection over M .

When A = C we have gC(n) = u(n) and hC(n) = su(n). The Lie
algebra u(n) consists of skew-Hermitian matrices. Using the Hermitian
inner product on the vector space V ∼= C

n to identify V with V
∗, we

obtain an identification u(n) = (V ∗ ⊗ V
∗) ∩ Λ2V ∗

R
. Globally on M ,

we get gC(TM ) ∼= Λ1,1(M)R. Similarly the trace component in u(n)
corresponds to the R-span of the Kähler form ω in Λ1,1(M)R. Thus in
the primitive decomposition of two-forms on M ,

Λ2(M) = Λ1,1
0 (M)R + Rω + (Λ2,0(M) + Λ0,2(M))R,

we have

gC(TM ) ∼= Λ1,1(M)R

hC(TM ) ∼= Λ1,1
0 (M)R.

Therefore a Hermitian connection DE over M is a C-connection iff it
defines a holomorphic structure on E and it is special if FE ∧ωn−1 = 0,
i.e., a Hermitian Yang-Mills connection.

When A = H we have gH(n) = sp(n)sp(1), hH(n) = sp(n) and

T ∗
M ⊗R C = V ⊗C S,
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well-defined up to ⊗L1/2, for any H-manifold M . In any event, V ⊗ V
and S ⊗ S are always well-defined and we have the following decompo-
sition of two-forms on M ,

Λ2(M,C) = Sym2V ⊗ Λ2S + Λ2V ⊗ Sym2S.

Note that:

(i) S being a Sp(1)-bundle implies Λ2S is trivial.

(ii) V is a symplectic bundle, using its symplectic form Ω ∈ Λ2V ∗ ∼=
Λ2V , we have a further splitting Λ2V = Λ2

0V + C. Hence

Λ2(M,C) = Sym2V + Sym2S + Λ2
0V ⊗ Sym2S.

When dimRM = 4, Sym2S (resp. Sym2V ) coincides with the space
of self-dual (resp. anti-self-dual) two-forms on M and Λ2

0V ⊗ Sym2S is
zero. We will continue to call a connection DE with its curvature FE

inside Sym2V ⊗ ad(E) an anti-self-dual connection, even though it is
traditionally called a B-connection.

If we denote the standard representation of sp(n) as V0, then the
Lie algebra sp(n) is naturally identified with Sym2V0. This implies that

gH(TM ) ∼= Sym2V + Sym2S,

hH(TM ) ∼= Sym2V .

In particular a special H-connection is the same as an anti-self-dual
connection on M . Similar to Hermitian Yang-Mills connections, special
H-connections have absolute minimum Yang-Mills energy. On the other
hand, on an oriented four manifold, every connection is a H-connection
because sp(1) + sp(1) = so(4).

Remark. There is also an identification,

Sym2V = Λ1,1
I ∩ Λ1,1

J ∩ Λ1,1
K .

Therefore a connection is a special H-connection if and only if it is
holomorphic with respect to I, J and K, and it is sometimes called a
hyperholomorphic connection. On a hyperkähler manifoldM , Verbitsky
[35] shows that if DE is a Hermitian-Yang-Mills connection with respect
to the Kähler structure ωJ and c1(E) and c2(E) are both Sp(1) invariant
cohomology class, then DE is a special H-connection.
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When A = O we have gO(n) = spin(7) and hO(n) = g2. WhenM is
a O-manifold, i.e., a Spin(7)-manifold, we have a natural decomposition
of two-forms [31],

Λ2(M) = Λ2
21(M) + Λ2

7(M).

They are characterized as follows: for any φ ∈ Λ2(M),

φ ∈ Λ2
21(M) iff φ+ ∗(Θ ∧ φ) = 0

φ ∈ Λ2
7(M) iff 3φ = ∗(Θ ∧ φ).

Furthermore, we have

gO(TM ) ∼= Λ2
21(M).

Therefore the curvature of any O-connection satisfies

FE + ∗(Θ ∧ FE) = 0.

This equation, and its G2-analog, are introduced by Donaldson and
Thomas in [8].

When M = X × S1 is a G2-manifold, then corresponding to the
reduction from SO(8) to SO(7) we have a decomposition,

Λ2(M) = Λ2(X) + Λ1(X) ∧ dθ

where θ is the angle coordinate on S1. On the other hand we have a sim-
ilar decomposition of two-forms [31] for the seven dimensional manifold
X,

Λ2(X) = Λ2
14(X) + Λ2

7(X),

with

hO(TM ) ∼= Λ2
14(X).

A special O-connection on X is again a G2-Donaldson-Thomas connec-
tion, i.e.,

FE ∧Θ = 0,

and these are absolute minimums for the Yang-Mills energy.
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3.2 Yang-Mills calibrations

Suppose E is a Hermitian vector bundle over an oriented Riemannian
manifold M , with volume form νM . The Yang-Mills energy of a Hermi-
tian connection DA is defined as follows:

YM(DA) =
∫

M
|FA|2vM .

The Euler-Lagrange equation is called the Yang-Mills equation and it
is given by,

D∗
AFA = 0.

Analogous to the volume calibration for minimal submanifolds (see
[12] and Section 4.4), we have the notion of Yang-Mills calibration for
connections, which gives Yang-Mills connections with absolute minimal
energy. This is a modification of the Ω-ASD connections introduced by
Tian in [34].

On a vector space V ∼= R
m with a fixed volume form ν, each element

Φ in Λm−4V ∗ defines a quadratic form qΦ on Λ2V ∗ as follows:

qΦ : Λ2V ∗ → R

qΦ(φ) = φ ∧ φ ∧ Φ/ν.

Definition 10. Suppose M is an oriented Riemannian manifold M
of dimension m, a differential form Φ ∈ Ωm−4(M) is called a Yang-Mills
calibrating form if

dΦ = 0

qΦ(φ) ≤ |φ|2

for any φ ∈ Ω2(M).

Definition 11. Suppose E is a Hermitian vector bundle over a man-
ifold M with a Yang-Mills calibrating form Φ. A Hermitian connection
DA on E is called Yang-Mills calibrated by Φ, or simply Φ-calibrated,
if its curvature tensor FA satisfies4

qΦ(FA) ≤ |FA|2.
4The quadratic form qΦ is extended to ad(E)-valued two-forms using the Killing

form.
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As in the volume calibration case, we have the following fundamental
lemma.

Lemma 12. If DA is a Φ-calibrated connection on E and DA′ is
any other connection, then the Yang-Mills energy of DA′ is smaller than
or equal to that for DA,

YM(DA′) ≥ YM(DA).

Moreover, if the equality sign holds, then DA′ is also Φ-calibrated.

Proof.

YM(DA′) =
∫

M
|FA′ |2νM ≥

∫
M
Tr(F 2

A′) ∧ Φ

=
∫

M
Tr(F 2

A) ∧ Φ (since dΦ = 0)

=
∫

M
|FA|2νM = YM(DA).

Hence the result. q.e.d.

The following Chern number inequality gives a topological constraint
to the existence of Φ-calibrated connections on E. It also give an effec-
tive way to characterize flat connections. The proof of it is simple and
standard.

Proposition 13. If E admits a Φ-calibrated connection then we
have ∫

M
ch(E)Φ ≤ 0

and the equality sign holds iff E is a flat bundle.

Proof. This follows immediately from the Chern-Weil formula

ch(E) = exp
(
i

2π
FE

)

and the definition of a Φ-calibrated connection. q.e.d.

For any Riemannian A-manifold M , there is a natural Yang-Mills
calibrating form and connections they calibrate are basically the same



308 n.c. leung

Table 4:

Calibrating form, Φ Yang-Mills connections

R-manifold Φ = 0 Flat connections

C-manifold Φ = ωn−2 Hermitian Yang-Mills

connections

H-manifold Φ = Θn−1 Anti-Self-Dual connections

O-manifold Φ = Θ Donaldson-Thomas connections

as special A-connections over M . We list these Yang-Mills calibrat-
ing forms in Table 4, giving the common names for the corresponding
calibrated Yang-Mills connections.

For example, when M is an oriented Riemannian four manifold,
Φ = 1 is a Yang-Mills calibrating form and connections it calibrates are
precisely ASD connections, i.e., F+

A = 0.

4. Minimal submanifolds

On any general Riemannian A-manifoldsM , we introduce two natu-
ral classes of submanifolds: (i) A-submanifolds and (ii) 1

2A-Lagrangian
submanifolds. A-submanifolds can be defined on any A-manifold, even
without a Riemannian metric (see Section 6). 1

2A-Lagrangian subman-
ifolds can be viewed as the maximally real submanifolds in M . For
example, when A = C they are (i) complex submanifolds and (ii) La-
grangian submanifolds in a Kähler manifold.

When M is special, there are two natural subclasses of (ii), called
special 1

2A-Lagrangian submanifolds of Type I and Type II. For exam-
ple, if M is a Calabi-Yau manifold, then they are special Lagrangian
submanifolds of phase 0 and phase π/2.

These A-submanifolds and special 1
2A-Lagrangian submanifolds are

always absolute volume minimizers, as they are volume calibrated.
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4.1 A-submanifolds

We first discuss the linear case. Suppose V is a linear A-space. To
discuss its linear A-subspaces, we can assume that A �= O, since every
nontrivial linear O-space is isomorphic to O itself. A linear A-space is
the same as a bi-module over A, which is really an A-vector space when
A equals R or C. A linear A-subspace of V is then a bi-submodule of V ,
i.e., a real vector subspace in V which is stable under the left and right
action of A. To globalize these A-subspace structures to any A-manifold,
we need to know that they are stable under twisted isomorphisms.

Lemma 14. Suppose W is a linear A-subspace of A
n and φ : A

n →
A

n is a twisted isomorphism of A
n. Then the image of φ is also a linear

A-subspace of A
n

Proof. This is obvious when A is either R or C because twisted
isomorphisms are the same as vector space isomorphisms. When A =
H, we have φ = (α, β) ∈ GH(n) = Sp(n)Sp(1). If β = 1 then φ is
an automorphism of A

n, thus it transforms linear H-subspaces to one
another. In any event, the action of β ∈ Sp(1) on A

n is the diagonal
action on the right, thus it also stabilizes any linear H-subspace of A

n.
Hence we have the result. q.e.d.

From the above lemma, we have the following well-defined notion.

Definition 15. Let M be any Riemannian A-manifold. A subman-
ifold C ofM is called a A-submanifold if for any point p in C, its tangent
space TpC is a linear A-subspace of TpM .

It is easy to see that any A-submanifold is itself a Riemannian A-
manifold. In the real case, a R-submanifold is simply an ordinary sub-
manifold. In the complex case, a C-submanifold in a Kähler manifold
M is equivalent to a complex submanifold of M . It always has absolute
minimal volume by the Wirtinger formula, or via calibration theory.

In the quaternionic case, Gray [9] shows that a H-submanifold in a
quaternionic Kähler manifold M is always a totally geodesic submani-
fold. In particular they are rather rare. Note that a submanifold C in a
hyperkähler manifold M which is complex with respect to all I, J and
K, i.e., a hyperholomorphic submanifold, is a H-submanifold of M .

Remark. If f is an A-isometry of a Riemannian A-manifold M ,
then its fixed point set is always an A-submanifold of M .
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4.2 1
2
A-Lagrangian submanifolds

Symplectic geometry is a subject about Lagrangian submanifolds in a
symplectic manifoldM . IfM has a compatible Riemannian metric such
that the symplectic form is parallel, then M is a Kähler manifold. To
rigidity Lagrangian submanifolds using the metric, we need M to be a
Calabi-Yau manifold and we consider those Lagrangian submanifolds C
which are special in the sense that ImΩ|C = 0. They are an essential in-
gredient in the mirror symmetry conjecture as discovered by Strominger,
Yau and Zaslow [32]. Recently we also realized that complex Lagrangian
submanifolds in hyperkähler manifolds, Cayley submanifold in Spin(7)-
manifolds, associative and coassociative submanifolds in G2-manifolds
all play important roles in conformal field theory, string theory and M-
theory, and therefore on the geometry of these manifolds. As we will
explain below, all these are (special) 1

2A-Lagrangian submanifolds and
play the role of decomplexifications of (special) A-manifolds.

First we study the linear case and we begin by reviewing linear La-
grangian subspaces in C

n with the standard Hermitian complex struc-
ture J and the standard symplectic structure ω = Σdxj ∧ dyj . A real
linear subspace C of dimension n in C

n is called Lagrangian if

ω|C = 0.

Equivalently it satisfies

JC is perpendicular to C,

because

ω(u, v) = g(Ju, v).

That is we have an orthogonal decomposition

C
n = C ⊕ JC

and therefore we can regard a Lagrangian subspace as giving a real
structure on C

n.
For example R

n, the fixed point set of the complex conjugation, is a
Lagrangian subspace in C

n. In fact every Lagrangian submanifold in C
n

can be brought to R
n by some unitary transformation of C

n and the set
of all Lagrangian subspaces in C

n is a homogeneous space U(n)/SO(n).
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We are going to generalize this to other normed linear A-spaces
V ∼= A

n. Note that every imaginary element u in A with unit length,
i.e., u ∈ S(ImA), defines a complex structure Ju on V ,

Ju(y) = yu,

for any y ∈ V . This is because every normed algebra A is alternative,
(yu)u = y(u2), and this implies that (Ju)2 = −1, i.e., a complex struc-
ture on V . Now we define a 1

2A-Lagrangian linear subspace in V to be
a maximally real subspace in V .

Definition 16. Suppose C is a middle dimensional real linear sub-
space in a normed linear A-space V . It is called a 1

2A-Lagrangian linear
subspace in V if

JuC ⊥ C

for any unit element u ∈ L in some real linear subspace L ⊂ ImA of
dimL = 1

2 dimA.

This definition is equivalent to having an orthogonal decomposition

V = C ⊕ JuC,

for every u ∈ L with |u| = 1.

Theorem 17. If C is a 1
2A-Lagrangian linear subspace in V and

we write L ⊂ ImA as in the above definition, then C is a Jv-complex
linear subspace of V for any unit vector v ∈ ImA perpendicular to L.

Proof. This is an empty assertion when A is either R or C. When
A = H with the standard complex structures I, J , K, we can assume,
without loss of generality,

IC ⊥ C and JC ⊥ C.

Using the associativity of H and C being of middle dimensional, we have

KC = (IJ)C = I(JC) = C.

That is C is a complex K-linear subspace of V , thus proving the asser-
tion.

When A = O, the above arguments do not work since O is nonas-
sociative. First we claim that we can assume that the 1

2A-Lagrangian
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linear subspace C in V ∼= O contains R. To see this, suppose that
u ∈ ImO with |u| = 1 satisfies JuC ⊥C, i.e.,

〈cu, c′〉 = 0

for any c, c′ ∈ C. We recall that for any g ∈ Spin(7) there is an θ ∈ SO(8)
such that g(cu) = g(c)θ(u). In particular, u ∈ ImO implies that θ(u) is
also imaginary because

0 = 〈u, 1〉 = 〈g(1)θ(u), g(1)〉 = |g(1)|2〈θ(u), 1〉.
From 〈cu, c′〉 = 0, we obtain

〈g(c)θ(u), g(c′)〉 = 0,

with θ(u) ∈ ImO, |θ(u)| = 1. That is

Jθ(u)g(C)⊥ g(C).
Using the fact that Spin(7) acts transitively on the unit sphere in O, we
have therefore verified our claim.

Since R ⊂ C, we have an orthogonal direct sum decomposition,

C = R⊕D
for some three dimension subspace D ⊂ ImO.

Second we claim that there is an orthogonal direct sum decomposi-
tion

ImO = D ⊕ L.
The reason is, for any d ∈ D and u ∈ L with |u| = 1, we have

〈u, d〉 = 〈1, du〉 = −〈1, Ju(d)〉 = 0

because 1 ∈ C which is perpendicular to Ju(d) ∈ JuC.
Third we want to prove that C is the real span of 1, i, j and k,

possibly after a G2 rotation. Without loss of generality, we can assume
that i, j ∈ D, by a G2 rotation if necessary. We write

k = ij = d+ u ∈ ImO

for some element d ∈ D perpendicular to both i and j, and for some
u ∈ L. Then

〈u, u〉 = 〈u, k〉 − 〈u, d〉 = 〈u, ij〉,
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because d and u are perpendicular by the second claim. On the other
hand,

〈u, ij〉 = 〈ıu, j〉 = 〈ı, ju〉 = 〈i, ju〉 = 0,

because i ∈ C and ju ∈ Cu are perpendicular to each other. This
implies that u = 0, or equivalently, k ∈ D. That is C is the real span of
1, i, j, k and L is the real span of e, ei, ej, ek with O = H⊕ eH. This,
in particular, gives our theorem. q.e.d.

Remark. The converse to the above corollary is not true. For
example C = H × {0} ⊂ H

2 is J-linear but it is not a 1
2A-Lagrangian

subspace of V = H
2.

From the proof, we see that a H-Lagrangian linear subspace in O

is precisely H×{0} ⊂ H
2 = O up to the action of Spin(7). Such linear

subspaces are studied by Harvey and Lawson and they are called Cayley
subspaces of O and they are volume calibrated by the four form Θ on O

(see [12] for various characterizations of Cayley subspaces). We therefore
have the following corollary.

Corollary 18. H-Lagrangian linear subspaces in O are equivalent
to Cayley subspaces.

Moreover we can justify the definition of 1
2A-Lagrangian linear sub-

space as being maximally real subspaces of V , in the following lemma.

Corollary 19. Suppose that C is a middle dimensional real linear
subspace in a normed linear A-space V . If there is a real linear subspace
L′ ⊂ ImA such that

JuC ⊥ C

for any unit element u ∈ L′, then dimL′ ≤ 1
2 dimA.

For submanifolds in a Kähler manifold, the condition JC ⊥ C is
usually written as ω|C = 0, namely the Lagrangian condition. We want
to do the same thing for all 1

2A-Lagrangian linear subspaces.

Proposition 20. There is an embedding of ImA into the space of
two-forms on the real vector space VR,

ImA
⊂→ Λ2V ∗

R ,

u→ ωu
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defined by

ωu(x⊗ y) = 〈x, yu〉.

Lemma 21. This embedding intertwines the action of GA(n) on
Λ2V ∗

R
via the inclusion GA(n) ⊂ O(m), and a natural action of GA(n)

on ImA given as follows: When A = C or H the action is given by the
composition of λA(n) and the conjugation; when A = O, the action is
given by Spin(7)→ SO(ImO), g → θg.

Proof. First ωu is a two-form because when u ∈ ImO, we have

ωu(x⊗ x) = 〈x, xu〉 = |x|2〈1, u〉 = 0.

Next we prove the compatibility with respect to the actions by
GA(n). In the complex case, it follows from GA(n) = U(n) acts trivially
on ImC. In the quaternionic case, (α, β) ∈ Sp(n)Sp(1) acts on u ∈ ImH

and gives β−1uβ. We compute,

〈αxβ, αyβ(β−1uβ)〉 = 〈xβ, yuβ〉 = 〈x, yu〉,

and we have the claim in this case. For the octonionic case, for any
g ∈ Spin(7), we have

g(yu) = g(y)θg(u)

for any y, u ∈ O. We compute

ωu(x⊗ y) = 〈x, yu〉 = 〈g(x), g(yu)〉
= 〈g(x), g(y)θg(u)〉 = ωθg(u)(g(x)⊗ g(y)),

and hence the result. q.e.d.

Remark. This proposition implies that, on any Riemannian A-
manifoldM , there is a real vector subbundle over Λ2(M) of rank dimA−
1, denotes sA(TM ), such that each fiber is a copy of ImA.

We can identify ImA ⊂ Λ2V ∗
R
∼= o(m) explicitly. Obviously ImR =

0. In the complex case, if we choose u = i then ωu is simply the standard
Kähler form as can be easily checked. Similarly, in the quaternionic
case, ωi, ωj and ωk are the standard Kähler forms for the complex
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structures I, J and K respectively. In particular we have the following
decomposition,

gA(n) = hA(n) + ImA,

for A �= O. In the octonionic case, we have

ImA ∼= Λ2
7O

where

Λ2
O = Λ2

21O + Λ2
7O,

is the decomposition of Λ2
O into irreducible Spin(7)-representations.

This can be verified either by identifying the Spin(7)representation Λ2
7O

as given by g → θg, or simply by checking the dimensions of these
irreducible pieces. Thus we have obtained the first part of the following
proposition.

Proposition 22. Suppose that V is a normed linear A-space and
we denote the image of ImA in Λ2V ∗

R
as sA. There is a decomposition

of gA(n)-representations,

gA(n) = hA(n) + sA,

when A �= O and Λ2
O = Λ2

21O + sO.
Moreover for any u ∈ ImA with unit length, we have a natural

complex structure Ju on V and ωu ∈ sA ⊂ Λ2V ∗
R
satisfying

V = C ⊕ JuC if and only if ωu|C = 0.

Proof. The first half is proven above. The proof for the second half
is the same as in the Kähler case, namely for any x, y ∈ C, we have

ωu(x ∧ y) = 〈x, yu〉 = 〈x, Juy〉.

The claim follows from the middle dimensionality of C. q.e.d.

As a corollary, we obtain an equivalent definition of a 1
2A-Lagrangian

linear subspace which resemblance the definition of an ordinary La-
grangian subspace.
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Corollary 23. Suppose that C is a half dimensional real linear
subspace in a normed linear A-space V . Then C is a 1

2A-Lagrangian
linear subspace if and only if there is a linear subspace L ⊂ ImA ∼=
sA ⊂ Λ2V ∗

R
with dimL = 1

2 dimA such that

ω|C = 0

for any ω ∈ L.

Using the above proposition and the proof of the earlier theorem
which describe explicitly H-Lagrangian linear subspaces in O, we obtain
the following corollary.

Corollary 24. If C is a real four dimensional linear subspace of O,
then it is a H-Lagrangian linear subspace if and only if the homomor-
phism defined by restricting differential forms,

Λ2
7(O)→ Λ2(C)

has a four dimensional kernel. Moreover this happens exactly when the
image of the above homomorphism is Λ2

+(C).

The next proposition is basically well-known (see [12] for the proof
in the octonion case).

Proposition 25. The space of 1
2A-Lagrangian linear subspaces in

A
n is a homogeneous space of GA(n). Explicitly they are U(n)/SO(n),

Sp(n)Sp(1)/U(n)U(1) and Spin(7)/Sp(1)3 for A = C, H and O respec-
tively.

After all these studies of 1
2A-Lagrangian in the linear case, we come

to the definition of a 1
2A-Lagrangian submanifold.

Definition 26. A middle dimensional real submanifold C in a Rie-
mannian A-manifold M is called a 1

2A-Lagrangian submanifold of M
if there is a vector subbundle5 L ⊂ sA(TM ) ⊂ Λ2(M) of rank(L) =
1
2 dimA such that

ω|C = 0

for any smooth section ω ∈ Γ(M,L).

5In fact we only need the subbundle L to be defined over C.
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Table 5:

1
2A-Lagrangian submanifolds

C ω|C = 0

(Lagrangian submanifolds)

H ω|C = 0 for all ω ∈ L ⊂ Sym2S w/ rank(L) = 2

O ω|C = 0 for all ω ∈ L ⊂ Λ2
7(M) w/ rank(L) = 4

(Cayley submanifolds)

Remark. Unlike Lagrangian submanifolds in a Kähler manifold,
C-Lagrangian submanifolds in a quaternionic Kähler manifold are not
widely studied in the literature. Nonetheless, every surface in an ori-
ented four manifold is a C-Lagrangian submanifold.

Table 5 summarizes 1
2A-Lagrangian submanifolds in Riemannian A-

manifolds and their common names.

4.3 Special 1
2
A-Lagrangian submanifolds

Next we introduce special 1
2A-Lagrangian submanifolds inside special

A-manifolds. As before, we start with the linear theory about special
1
2A-Lagrangian linear subspaces in A

n.
For example in the complex case, if C is a Lagrangian linear subspace

of V ∼= C
n, then there is an A ∈ SU(n) such that

A(C) = eiθ
R

n

for some angle θ, which is usually called the phase of C. When C is a
Lagrangian submanifold in a Calabi-Yau manifoldM , then the gradient
of θ is the mean curvature vector of C inM . In fact, if θ is constant over
C, then C is a minimal submanifold inM with absolute minimal volume
and it is called a special Lagrangian submanifold in M with phase θ.
We want to generalize this concept to other special A-manifolds. First
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we need the following definitions, which are roughly the determinants
of C.

Definition 27. For any 1
2A-Lagrangian subspace C in V ∼= A

n we
define another 1

2A-Lagrangian subspace λ(C) in A as follows:
When A = C, Λ(C) is the image of ΛnC under the following com-

position of natural homomorphisms,

ΛnVR → (Λn,0(V )⊕ Λ0,n(V ))R ∼= Λn,0(V ) = Λn(V ) ∼= C.

Here the first homomorphism is the orthogonal projection to the Hodge
(p, q)-decomposition.

When A = H, any C-Lagrangian submanifold is holomorphic with
respect to a unique complex structures ±Ju with u ∈ ImH. λ(C) is the
complex line in H ∼= C

2 corresponding to u under the following identifi-
cation,

S(ImH)/Z2
∼= S(Λ2

+H)/Z2
∼= PC(C2)/Z2.

λ(C) ⊂ H is only well-defined up to replacing it by its orthogonal com-
plement λ(C)⊥ ⊂ H.

When A = O, we simply define λ(C) = C.

Remark. In the complex case, C being a Lagrangian in V implies
that λ(C) is a line in ΛnV ∼= C, thus also a R-Lagrangian by trivial
reason. It can be checked directly that this is the line in C with slope
tan θ.

Definition 28. A 1
2A-Lagrangian linear subspace C in a normed

linear A-space V ∼= C
n is called special of Type I (resp. Type II) if

1 ∈ λ(C) ⊂ A (resp. 1 ∈ λ(C)⊥ ⊂ A).

Remark. When A = H, Type I and Type II C-Lagrangian sub-
spaces are equivalent due to quotient by {±1} in GH(n) = Sp(n) ×
Sp(1)/± 1.

Remark. As in the 1
2A-Lagrangian case, the space of special 1

2A-
Lagrangian linear subspaces in A

n is a homogeneous space of HA(n).
Explicitly they are the fibers of the following fiber bundles (see [12] for
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the proof in the octonion case),
SU(n)
SO(n) → U(n)

SO(n) → U(1)
SO(1) = S1

Sp(n)
U(n) → Sp(n)Sp(1)

U(n)U(1) → Sp(1)
U(1) /± 1 = S2/± 1

G2
Sp(1)2

→ Spin(7)
Sp(1)3

→ S7

Sp(1) = S4.

To define the corresponding notion for submanifolds, we recall that
there is a canonical A-bundle AM over any Riemannian A-manifold M
corresponding to the representation λA(n) : GA(n) → O(A), which is
trivial when M is special. We fix a trivialization compatible with the
action by A and let s be the section of this bundle corresponding to
1 ∈ A. From the above linear considerations, if C is a 1

2A-Lagrangian
submanifold in M , the λ(C) is a subbundle of AM restricted to C.

Definition 29. A 1
2A-Lagrangian submanifold C in a special Rie-

mannian A-manifold M is called special of Type I (resp. Type II) if
s ∈ λ(C) ⊂ AM (resp. s ∈ λ(C)⊥ ⊂ AM ).

Note that C-Lagrangians of Type I and Type II are the same.
Table 6 gives characterizations of special 1

2A-Lagrangian submani-
folds, together with their common names.

Table 6:

Special 1
2A-Lagr. submfd. Special 1

2A-Lagr. submfd.

(Type I) (Type II)

C ω|C = ImΩ|C = 0 ω|C = ReΩ|C = 0

(special Lagr. submfd. (special Lagr. submfd.
with phase 0) with phase π/2)

H Ω|C = 0 Ω|C = 0

(Complex Lagrangian (Complex Lagrangian
submanifolds) submanifolds)

O × preserves C (or χ|C = 0) Ω|C = 0

(Associative submanifolds) (Coassociative submanifolds)
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Table 7:

Holonomy Calibrating form

(Riemannian A-manifolds) (Calibrated submanifolds)

R O(n) Φ = exp(νolM )

(Riemannian manifolds) (Points and M)

C U(n) Φ = exp(ω)

(Kähler manifolds) (Complex submanifolds)

H Sp(n)Sp(1) Φ = exp(Θ)

(Quaternionic Kähler mfds) (Quaternionic submanifolds)

O Spin(7) Φ = exp(Θ)

(Spin(7)-manifolds) (Cayley submanifods)

4.4 Volume calibrations

This short subsection is included for completeness, readers should con-
sult the paper [12] by Harvey and Lawson for a careful treatment.

Definition 30. (1) A differential form Φ ∈ Ωk(M) in an oriented
Riemannian manifold M is called a volume calibrating form if

dΦ = 0

Φ|P ≤ dvP for all P ∈ G̃r(k, TM ).

(2) A k-dimensional submanifold C ⊂M is calibrated by Φ if

Φ|C = dvC .

We have the following fundamental lemma.

Lemma 31. Any closed calibrated submanifold C is homologically
volume minimizing, i.e., Vol(C) ≤ Vol(C ′) provided C and C ′ represent
the same homology class in M . Moreover if Vol(C) = Vol(C ′) then C ′

is also calibrated.
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Table 8:

Holonomy Calibrating form

(Special Riem. A-manifolds) (Calibrated submanifolds)

R SO(n) Φ = vM

(Oriented manifolds) (Whole manifold M)

C SU(n) Type I: Φ = ReΩ

(Calabi-Yau manifolds) (SLag with phase 0)

Type II: Φ = ImΩ

(SLag with phase π/2)

H Sp(n) Φ1 = ReΩn
I and Φ2 = ReΩn

K

(Hyperkähler manifolds) (Complex Lagrangian
submanifolds)

O G2 Type I: Φ = Ω

(G2-manifolds) (Associative submanifods)

Type II: Φ = Θ

(Coassociative submanifolds)

For Riemannian A-manifolds, there are natural calibrating forms Φ
and their calibrating submanifolds are closely related to A-submanifolds.
We list them in Table 7.

For special Riemannian A-submanifolds, there are further calibrat-
ing forms, which are closely related to special 1

2A-Lagrangian submani-
folds above. They are listed in the Table 8.

Remark. A middle dimension submanifold C in a hyperkähler
manifold M is a complex Lagrangian if ΩJ |C = 0. Since ΩJ = ωI + iωK

we have ωI = ωK = 0. In this case ΩI |C = ωJ (since ωK = 0), so
ImΩn

I |C = 0, i.e., C is calibrated by ReΩn
I . Similar for ReΩn

K . The
converse is also true. It is also calibrated by ωn

J .
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5. Geometry and duality

On a C-manifold M (i.e., Kähler manifold), its C-geometry studies
cycles (C,DE) with C a complex submanifold inM and E a holomorphic
bundle over C. In algebraic geometry, one also allow C and E to be
singular and consider Db(M) the derived category of coherent sheaves
on M . When M is special (i.e., Calabi-Yau manifold) we would also
require DE to be a special C-connection, i.e., a Hermitian Yang-Mills
connection over C.

On the other hand, the R-Lagrangian geometry of a Kähler (or sym-
plectic) manifold M studies cycles (C,DE) with C a Lagrangian sub-
manifold and DE a unitary flat connection over C. The space of mor-
phisms between these cycles are the Floer homology groups. When M
is special, we also study special Lagrangians C. For instance the mirror
Calabi-Yau manifold is conjectured to be the moduli space of certain
special Lagrangian cycles, as in the SYZ mirror conjecture.

A novelty about geometry for manifolds with special holonomy is
the duality transformation. For example, the mirror symmetry among
Calabi-Yau manifolds (see e.g., [22]), motivated from physics, is still
very mysterious to mathematicians. From the work of Strominger, Yau
and Zaslow [32], we expect that it is a fiberwise Fourier transformation
along a special Lagrangian torus fibration6 .

Fourier transformation on tori are well-studied in mathematics. We
review it from our point of view: namely it should transform the A

′-
geometry of one torus to the A

′-geometry of its dual torus, with A
′ =

R,C or H. If we complexify a torus Tn to M = Tn × iRn, then it is a
special A-manifold with A

′ = 1
2A. Moreover it has a natural fibration by

special 1
2A-Lagrangian tori given by projection. The fiberwise Fourier

transformation, or the SYZ transformation, should transform the A-
geometry on M to the 1

2A-Lagrangian geometry on W = Tn∗ × iRn∗,
and vice versa.

5.1 A-geometry and 1
2
A-Lagrangian geometry

Suppose M is a Riemannian A-manifold. We consider (i) the geometry
of A-cycles and (ii) the geometry of 1

2A-Lagrangian cycles on M .

Definition 32. Suppose M is a Riemannian A-manifold. A pair
(C,DE) is called an (i) A-cycle if C is a A-submanifold in M and DE

6We also need a Legendre transformation along the base [21].
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Table 9:

A-cycle on M 1
2A-Lagrangian cycle on M

C Complex submanifold + Lagrangian submanifold +

Holomorphic bundle Unitary flat bundle
H Quaternionic submanifold + C-Lagrangian submanifold +

Bundle with C-connection Holomorphic bundle

O The whole manifold M + Cayley submanifold +

Spin(7)-Donaldson- Anti-Self-Dual bundle
-Thomas bundle

is a A-connection over C or (ii) 1
2A-Lagrangian cycle if C is a 1

2A-
Lagrangian submanifold in M and DE is a special 1

2A-connection over
C.

Table 9 gives the common names of these cycles.

Definition 33. Suppose M is a special Riemannian A-manifold. A
pair (C,DE) is called an (i) special A-cycle if C is an A-submanifold in
M andDE is a special A-connection over C or (ii) special 12A-Lagrangian
cycle (or Type I or II) if C is a special 1

2A-Lagrangian submanifold (or
Type I or II) in M and DE is a special 1

2A-connection over C.

Notice that all special cycles are calibrated. For example a special
C-cycle (C,DE) in a Kähler manifold is calibrated by expω because
a complex submanifold C of dimension 2k is volume calibrated by ωk

and a Hermitian Yang-Mills connection over C is Yang-Mills calibrated
by ωk−2. Table 10 gives the common names of special cycles and their
calibrating forms.

(Special) A-geometry studies (special) A-cycles and (special) 1
2A-

Lagrangian geometry studies (special) 1
2A-Lagrangian cycles on (spe-

cial) Riemannian A-manifolds.

Remark. (Special) C-geometry and R-Lagrangian geometry are
basically the complex algebraic geometry and the symplectic geometry.
Special R-Lagrangian geometry is important in the SYZ mirror con-
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Table 10:

Special A-cycle Special 1
2
A-Lagr. cycle, I Special 1

2
A-Lagr. cycle, II

(calibrating form) (calibrating form) (calibrating form)

Points or M +
R Unitary flat bundle n/a n/a

(exp νM )

Complex submanifold + Lagr. submfd phase 0 + Lagr. submfd phase π/2 +
C Herm. Yang-Mills bundle Unitary flat bundle Unitary flat bundle

(expω) (exp(ReΩ)) (exp(ImΩ))

Quaternionic submfd + Complex Lagr. submfd + Complex Lagr. submfd +
H ASD connection Herm. Yang-Mills bdl Herm. Yang-Mills bdl

(expΘ) (exp(ReΩn
I ) and expωJ) (exp(ReΩn

I ) and expωJ)

The manifold M + Associative submfd + Coassociative submfd +
O G2-Donaldson-Thomas bdl Unitary flat bundle ASD connection

(expΘM ) (expΩM ) (expΘX)

jecture. Special C-Lagrangian geometry is studied in [24] and is closely
related to the classical Plucker formula. For (special) O-manifolds, these
geometries are discussed by Donaldson and Thomas [8], Hitchin, Gukov,
Yau and Zaslow [11], Lee and the author [18], [20].

5.2 Fourier transformation of A-geometry

First we review the Fourier transformation in geometry. Classically
Fourier transformation is a duality between functions on a vector space
V ∼= R

n and on its dual vector space V ∗. It is given by

f(x)→ f̂(y) =
1

(2π)n

∫
V
f(x)eix·ydx.

The Fourier transformation on the geometry of flat tori is similar.
Suppose T = V/Λ is any n dimensional torus, i.e., Λ ∼= Z

n is a lattice
in V ∼= R

n. The dual torus T ∗ is defined as V ∗/Λ∗ where Λ∗ consists of
those φ ∈ V ∗ with φ(Λ) ⊂ Z. This relationship is reflexive, (T ∗)∗ = T .
Moreover, T ∗ can be naturally identified with the moduli space of flat
U(1)-connections on T ,

MU(1)-flat(T ) ∼= T ∗.
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On T×T ∗, there is universal Poincaré line bundle L with a universal
connection, D = d+πi

∑n
j=1(y

jdyj − yjdy
j), where yj ’s are coordinates

on T ∗ dual to the linear coordinates yj ’s on T . Its curvature, F =
2πiΣdyj∧dyj plays the role of the kernel function in the classical Fourier
transformation.

Fourier transformation of R-geometry on T
On the topological level, the Fourier transformation is given by,

F : Hk(T,Z) �→ Hn−k(T ∗,Z)

F(φ) =
∫

T
φ ∧ e i

2π
F,

and we also have a similar one for K-groups.
On the flat level, we consider flat bundles over T or points in T , i.e.,

cycles (C,DE) that are calibrated by exp νM , where νM is the volume
form on T . Any flat U(r)-bundle E over T is isomorphic to an direct sum
of flat line bundles, unique up to permutations. This can be interpreted
as an identification of moduli spaces of special R-cycles on T and on T ∗,
via the Fourier transformation.

Fourier transform of C-geometry on T
When T and T ∗ are Abelian varieties, Mukai shows that the Fourier

transformation,

F(·) = Rπ1∗(π∗2(·)⊗ L)
is an equivalence of derived categories of coherent sheaves, Db(T ) and
Db(T ∗), with the inversion property. This has far reaching implications
in the theory of Abelian varieties.

Fourier transform of H-geometry on T
Unforturnately, we only know of a low dimension example in this

case: A flat torus T of dimension four is a special H-manifold. Braam
and Schenk (see e.g., [8]) show that the Fourier transformation of an
ASD connection over T without any flat factor is another ASD connec-
tion over T ∗. Moreover this bijection between their moduli spaces is an
isometry with respect to the Weil-Peterrson L2-metrics.

In summary we expect that the Fourier transform on flat A-tori gives
a correspondence:

A-Geometry(T )←→ A-Geometry(T ∗).
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5.3 1
2
A-Lagrangian fibrations

On a Riemannian A-manifold M , a 1
2A-Lagrangian fibration

f :M → B

is a smooth map f such that its generic fibers are smooth 1
2A-Lagrangian

submanifolds of M . We usually also assume that f has a section which
is also a 1

2A-Lagrangian submanifold.
1
2A-Lagrangian fibrations have been playing important roles in var-

ious branches of mathematics and physics. In symplectic geometry,
a Lagrangian fibration with a Lagrangian section is a very important
structure. It is sometimes called a completely integrable system, or
a real polarization when we try to quantize the symplectic manifold.
Familiar examples include toric varieties.

In string theory, Strominger, Yau and Zaslow propose that mirror
symmetry should be explained in terms of the fiberwise Fourier transfor-
mation along special Lagrangian fibrations on mirror Calabi-Yau man-
ifolds [32].

Heuristically, one should view a 1
2A-Lagrangian fibration with a sec-

tion on M as a global decomplexification of M .

Remark. When A equals C or H, a generic fiber of any 1
2A-

Lagrangian fibration is a torus. However in a Spin(7)-manifold or a G2-
manifold, such a fiber is expected to be either a torus or a K3 surface,
at least near an adiabatic limit (see [18]).

5.4 Mirror duality between different geometries

Following SYZ proposal, we would be interested in a fiberwise Fourier
transformation on any Riemannian A-manifold M with a given 1

2A-
Lagrangian fibration and a section. First we want to construct a dual
torus fibration

g :W → B.

First this would require each fiber of f to have the same dimension.
Typically, M would then be a special A-manifold, except in the octo-
nionic case. Second, in order the perform the Fourier transformation on
fibers, we require these fiber tori to be flat, at least in the limit. To be
more precise, we assume that M has an one parameter family of such
metrics parametrized by t ∈ [0,∞), such that as t → ∞ the second
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fundamental form of each smooth fiber goes to zero. This is related to
the so-called large structure limit in the physics literature. Then one
expects that:

(i) The total space of the dual torus fibration is also a special A-
manifold.

(ii) The fiberwise Fourier transformation will give an equivalence of
geometries:

(Special) A-Geometry(M)

←→(Special)
1
2

A-Lagrangian Geometry(W ).

Moreover the relationship between M and W should be reflexive.
The above picture has been over-simplified. There are many sub-

tleties involved. Many of them are related to quantum corrections, an
issue we have not addressed here. The most famous example is the
mirror symmetry conjecture for special C-manifolds (i.e., Calabi-Yau
manifolds). The fiberwise Fourier transformation in this case has been
studied by many people including Gross, Hitchin, Kontsevich, Ruan,
Vafa, Witten, Yau, Zaslow, the author and many others.

We would indicate how the fiberwise Fourier transformation works
in the simplest situation and show how the symplectic structure (de-
termined by expω) is being transformed to the complex structure (de-
termined by Ω) on the mirror: Suppose M = C

n = R
n × R

n with the
standard complex structure J , i.e., ΩM = dz1 ∧ · · · ∧ dzn, and with
a symplectic structure ωM = Σφij(x)dxidyj which is invariant under
translations along y directions. Then W = R

n × R
n∗ with coordinates

xi’s and yi’s. By direct computations, under the fiberwise Fourier trans-
formation on differential forms,

(·)→
∫
(·)eFdy1dy2 . . . dyn.

where F = iΣdyj ∧ dyj is the universal curvature form, we have

exp(ωM )→ ΩW =
∏

(φijdx
i + idyj)

ΩM → exp(ωW ) = exp(
∑
dxi ∧ dyi).

Thus we see how variation of symplectic structures on M corresponds
to variation of complex structures on W explicitly (see [21] for more
details).
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6. Remarks and questions

In this last section, we remark on some other aspects of geometry
over A with A = R, C, H, O, and mention a few interesting questions.

Triality transformation
As we discussed in Section 5.4, mirror symmetry for Calabi-Yau

manifolds and hyperkähler manifolds is a duality transformation for the
geometry of these manifolds. In its simplest form, it can be viewed
as the duality between a vector space and its dual vector space. The
novelty about octonion in algebra is the triality (see e.g., [3]). It would
be important to introduce the triality transformation to the geometry
for O-manifolds. The work of Gukov, Yau and Zaslow [11] might be
related to this.

Moduli space of connections
In gauge theory, we consider the space of connections A on a bundle

E modulo the group of gauge transformations G = Aut(E), and call
this the moduli space of connections on E. On a Kähler manifold M ,
the moduli space of special C-connections (i.e., Hermitian Yang-Mills
connections) is the symplectic reduction µ−1(0)/G of the space of C-
connections by G, because

µ : A → Ω2n(M, ad(E))

µ(DE) = FE ∧ ωn−1

is the moment map for the action of G on A. By the work of Donaldson,
Uhlenbeck and Yau, we can also view this as the complex quotient of
the space of C-connections by GC. Similarly on a hyperkähler manifold
M , there is a hyperkähler moment map,

µ : A → Ω4n(M, ad(E))⊗ R
3

µ(DE) = (FE ∧ ω2n−1
I , FE ∧ ω2n−1

J , FE ∧ ω2n−1
K ),

such that the moduli space of special H-connections on E is the hy-
perkähler quotient of A by G, restricted to the space of H-connections.
On a G2-manifold M = X × S1, one does not have the notion of an
octonionic quotient. However we still can define µ in the same way
and its zeros correspond to connections pullback from X. Therefore we
have a similar picture as before, namely the space of Spin(7)-Donaldson-
Thomas connections on M with µ = 0 quotienting by G is the moduli
space of G2-Donaldson-Thomas connections on X.
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Table 11:

GA(n) HA(n)

(A-manifolds) (Special A-manifolds)

R GL(n,R) GL+(n,R)

(Manifolds) (Oriented manifolds)

C GL(n,C) SL(n,C)

(Complex manifolds)

H GL(n,H)H× GL(n,H)

(Quaternionic manifolds) (Hypercomplex manifolds)

O Spin(7) G2

(Spin(7)-manifolds) (G2-manifolds)

A-manifolds without metrics
Real and complex manifolds are usually defined using coordinate

charts and requiring their transition functions to be differentiable and
holomorphic respectively. However such definitions can not be general-
ized to the quaternionic and octonionic cases. For example any smooth
map which preserves quaternionic structures must be affine (e.g., [5]).
The correct generalization is to use a torsion free connection on M pre-
serving an A-structure on the frame bundle: We denote by GA(n) the
group of twisted isomorphisms φ of A

n, but do not require φ to be an
isometry. Similarly, we have HA(n) for special twisted isomorphisms.

Definition 34. A smooth manifold M is called a (special) A-
manifold if the structure group of its frame bundle has a reduction
to GA(n) (resp. HA(n)) together with a torsion free connection.

Table 11 gives explicit descriptions of GA(n) and HA(n), together
with the usual names for these manifolds.

A-torsions
Ray and Singer define analytic torsions for real and complex man-

ifolds, they are important nonlocal invariants for these manifolds and
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play important roles in the family index theory. The quaternionic gen-
eralization of the analytic torsion is discussed by Leung, Yi [26] and
Koehler, Weingartmath [15]. It is natural to ask for their analog in the
octonionic case and their common roles in the geometry over A.

G2-symplectic manifolds
A different generalization of Riemannian A-manifolds is by not re-

quiring the almost complex structures on M to be integrable, but only
require the closedness of the calibrating differential forms like the Kähler
form or the holomorphic volume form. It turns out that integrability is
automatic in the Calabi-Yau case, hyperkähler case and Spin(7)-case.
And we only obtain two new classes of manifolds this way, namely (1)
symplectic manifolds and (2) almost G2-manifolds. In [25] the author
discuss TQFT on almost G2-manifolds.

Notice that 1
2A-Lagrangian submanifolds can be defined using van-

ishing of certain two-forms, thus they are well-defined for such mani-
folds. In the symplectic case, they are simply Lagrangian submanifolds
in the usual sense. Indeed, if M is an almost G2-manifold, i.e., there
exists a closed nondegenerate three form on M , then the space LM of
all unparametrized loop in M has a natural symplectic structure, as
observed by Movshev.

Twistor theory for octonionic manifolds
On any oriented Riemannian four manifold M , we can define a

twistor space Z with a fibration

f : Z →M

whose fiber over x is the S2-family of Hermitian complex structures
on TxM . The twistor space Z has a natural almost complex structure
which is integrable if and only if the Weyl curvature tensor ofM is self-
dual. Penrose’s twistor transformation gives a correspondence between
the conformal geometry of M and the complex geometry of Z (see e.g.,
[5]). There is a natural generalization of the twistor transform for any
quaternionic Kähler manifold, which is a transformation between the
quaternionic geometry of M and the complex geometry of its twistor
space Z.

In certain sense, the twistor theory is another form of a de-complexi-
fication of M . Therefore it is natural to ask whether there is an analog
theory for G2-manifolds, or even Spin(7)-manifolds. One would expect
that such twistor spaces would be quaternionic manifolds.
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